A Multi-omic Atlas of Human Embryonic Skeletal Development
Bone and joint formation in the developing skeleton rely on co-ordinated differentiation of progenitors in the nascent developing limbs and joints. The cell states, epigenetic processes and key regulatory factors underlying lineage commitment to osteogenic, chondrogenic and mesenchymal cell states during ossification and joint formation remain poorly understood and are largely unexplored in human studies. Here, we apply paired single-nuclei transcriptional and epigenetic profiling of 336,000 droplets, in addition to spatial transcriptomics, to construct a comprehensive atlas of human bone, cartilage and joint development in the shoulder, hip, knee and cranium from 5 to 11 post-conception weeks. Spatial mapping of cell clusters to our highly multiplexed in situ sequencing (ISS) data using our newly developed tool ISS-Patcher revealed new cellular mechanisms of zonation driving bone and joint formation. Combined modelling of chromatin accessibility and RNA expression allowed for the identification of the transcriptional and epigenetic regulatory landscapes that govern differentiation of various mesenchymal lineages including osteogenic and chondrogenic lineages, and novel chondrocyte cell states. In particular, we define regionally distinct limb and cranial osteoprogenitor populations and trajectories across the fetal skeleton and characterise differential regulatory networks that govern intramembranous and endochondral ossification. We introduce SNP2Cell, a tool to link cell-type specific regulatory networks to numerous polygenic traits such as osteoarthritis. We also conduct in silico perturbations of genes that cause monogenic craniosynostosis and implicate potential pathogenic cell states and disease mechanisms involved. This work forms a detailed and dynamic regulatory atlas of human fetal skeletal maturation, and advances our fundamental understanding of cell fate determination in human skeletal development.
- Contact
- Ken To, Lijiang Fei, Jan Patrick Pett
- Release
- 9 October 2024
- Lab
- Teichmann Lab
- Tissue
- Calvaria, Hip, Knee, Lower limb, Shoulder, Skull base, Upper limb
- Assay
- 10x Multiome, 10x Visium, ISS
- Disease
- None
- Organism
- Homo sapiens
scRNA-seq Datasets
Hip
Knee
Shoulder
Skull base
Knee
Shoulder
Visium Datasets
ISS Datasets
Supplementary Downloads
Reproducibility
Reproducibility is a major principle underpinning the scientific method. We make publicly available the raw data and analysis scripts associated with each collection.
- Code Repository
- https://github.com/Teichlab/skeletal_dev_atlas/